期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Machine learning applied to recognition of dinoflagellate cysts:Type study with the species Batioladinium longicornutum
1
作者 a.sanches B.Agbulut +1 位作者 L.Castro M.Vieira 《Artificial Intelligence in Geosciences》 2025年第2期184-192,共9页
This study explores the application of YOLOv10,a cutting-edge object detection framework,to automate the identification and classification of Batioladinium longicornutum.Utilizing a dataset of 137 annotated images,we ... This study explores the application of YOLOv10,a cutting-edge object detection framework,to automate the identification and classification of Batioladinium longicornutum.Utilizing a dataset of 137 annotated images,we trained and validated the model to distinguish B.longicornutum from other species with a mean Average Precision(mAP@0.5)of 62.0%.The methodology incorporated robust data augmentation techniques and evaluation metrics,including precision-recall analysis,confusion matrices,and cross-validation.YOLOv10’s architecture facilitated accurate feature extraction and efficient classification,even with a relatively small dataset.While this study focuses on species-level identification,future work will extend to morphological and preservation state classifications,offering broader applications in automated palynology.These findings demonstrate the potential of YOLOv10 to revolutionize taxonomic workflows and enhance the efficiency of paleontological research. 展开更多
关键词 Artificial intelligence Machine learning Dinoflagellate cysts PALYNOLOGY Object detection
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部