In an experiment carried out at the Prague Asterix Laser System at laser intensities relevant to shock ignition conditions(I>10^(16) W/cm^(2)),the heating and transport of hot electrons were studied by using severa...In an experiment carried out at the Prague Asterix Laser System at laser intensities relevant to shock ignition conditions(I>10^(16) W/cm^(2)),the heating and transport of hot electrons were studied by using several complementary diagnostics,i.e.,K_(α)time-resolved imaging,hard x-ray filtering(a bremsstrahlung cannon),and electron spectroscopy.Ablators with differing composition from low Z(parylene N)to high Z(nickel)were used in multilayer planar targets to produce plasmas with different coronal temperature and collisionality and modify the conditions of hot-electron generation.The variety of available diagnostics allowed full characterization of the population of hot electrons,retrieving their conversion efficiency,time generation and duration,temperature,and angular divergence.The obtained results are shown to be consistent with those from detailed simulations and similar inertial confinement fusion experiments.Based on the measured data,the advantages,reliability,and complementarity of the experimental diagnostics are discussed.展开更多
X-ray absorption spectroscopy is a well-accepted diagnostic for experimental studies of warm dense matter.It requires a short-lived X-ray source of sufficiently high emissivity and without characteristic lines in the ...X-ray absorption spectroscopy is a well-accepted diagnostic for experimental studies of warm dense matter.It requires a short-lived X-ray source of sufficiently high emissivity and without characteristic lines in the spectral range of interest.In the present work,we discuss how to choose an optimum material and thickness to get a bright source in the wavelength range 2A–6A(∼2 keV to 6 keV)by considering relatively low-Z elements.We demonstrate that the highest emissivity of solid aluminum and silicon foil targets irradiated with a 1-ps high-contrast sub-kJ laser pulse is achieved when the target thickness is close to 10μm.An outer plastic layer can increase the emissivity even further.展开更多
Atomic models of high-Zmulticharged ions are extremely complex and require experimental validation.Oneway to do so is to crosscheck the predicted wavelengths of resonance transitions in He-and Li-like ions against pre...Atomic models of high-Zmulticharged ions are extremely complex and require experimental validation.Oneway to do so is to crosscheck the predicted wavelengths of resonance transitions in He-and Li-like ions against precise spectroscopic measurements that use the spectral lines of H-like ions for spectra calibration;these reference data can be modeled with outstanding precision.However,for elements with Z of at least 15,it is quite difficult to create a hot dense plasma with a large concentration ofH-like charge states.To mitigate this issue,the suggestion here is to use as laser targets particular minerals comprising elements with moderate(between 15 and 30)and low(less than 15)Z,with emission from the latter delivering perfect reference lines over a whole range o fHe-and Li-like moderate-Z emission under examination.This approach is implemented to measure the wavelengths of resonance transitions(1snp→1s^(2) for n=2,3)in He-likeKions and their dielectronic satellites by irradiating plates of orthoclase(KAlSi_(3)O_(8))with0.5-kJ subnanosecond laser pulses.X-ray spectra of the laser-generated plasma contain the investigated lines of highly charged K-ions together with precisely known reference lines of H-like Al and Si atoms.The K-shell spectral line wavelengths are measured with a precision of around 0.3 mA.展开更多
Laser–plasma interaction(LPI)at intensities 1015–1016 W·cm^-2 is dominated by parametric instabilities which can be responsible for a significant amount of non-collisional absorption and generate large fluxes o...Laser–plasma interaction(LPI)at intensities 1015–1016 W·cm^-2 is dominated by parametric instabilities which can be responsible for a significant amount of non-collisional absorption and generate large fluxes of high-energy nonthermal electrons.Such a regime is of paramount importance for inertial confinement fusion(ICF)and in particular for the shock ignition scheme.In this paper we report on an experiment carried out at the Prague Asterix Laser System(PALS)facility to investigate the extent and time history of stimulated Raman scattering(SRS)and two-plasmon decay(TPD)instabilities,driven by the interaction of an infrared laser pulse at an intensity^1.2×1016 W·cm^-2 with a^100μm scalelength plasma produced from irradiation of a flat plastic target.The laser pulse duration(300 ps)and the high value of plasma temperature(~4 ke V)expected from hydrodynamic simulations make these results interesting for a deeper understanding of LPI in shock ignition conditions.Experimental results show that absolute TPD/SRS,driven at a quarter of the critical density,and convective SRS,driven at lower plasma densities,are well separated in time,with absolute instabilities driven at early times of interaction and convective backward SRS emerging at the laser peak and persisting all over the tail of the pulse.Side-scattering SRS,driven at low plasma densities,is also clearly observed.Experimental results are compared to fully kinetic large-scale,two-dimensional simulations.Particle-in-cell results,beyond reproducing the framework delineated by the experimental measurements,reveal the importance of filamentation instability in ruling the onset of SRS and stimulated Brillouin scattering instabilities and confirm the crucial role of collisionless absorption in the LPI energy balance.展开更多
In this work we present experimental results on the behavior of diamond at megabar pressure. The experiment was performed using the PHELIX facility at GSI in Germany to launch a planar shock into solid multi-layered d...In this work we present experimental results on the behavior of diamond at megabar pressure. The experiment was performed using the PHELIX facility at GSI in Germany to launch a planar shock into solid multi-layered diamond samples. The target design allows shock velocity in diamond and in two metal layers to be measured as well as the free surface velocity after shock breakout. As diagnostics, we used two velocity interferometry systems for any reflector(VISARs). Our measurements show that for the pressures obtained in diamond(between 3 and 9 Mbar),the propagation of the shock induces a reflecting state of the material. Finally, the experimental results are compared with hydrodynamical simulations in which we used different equations of state, showing compatibility with dedicated SESAME tables for diamond.展开更多
基金This work was carried out within the framework of the EUROfusion Consortium,funded by the European Union via the Euratom Research and Training Programme(Grant No.101052200-EUROfusion)Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or the European Commission.Neither the European Union nor the European Commission can be held responsible for them.The involved teams have operated within the framework of the Enabling Research Project:Grant No.ENR-IFE.01.CEA“Advancing shock ignition for direct-drive inertial fusion.”The work was also supported by the Natural Sciences and Engineering Research Council of Canada(Grant No.RGPIN-2019-05013)+5 种基金The authors acknowledge support of the PALS Infrastructure within the MŠMT(MEYS)project Grant No.LM2023068Staff members of the PALS Research Center appreciate financial support(Grant No.LM2023068)from the Czech Ministry of Education,Youth and Sports facilitating operation of the PALS facilityThe work of JIHT RAS team was supported by the Ministry of Science and Higher Education of the Russian Federation(State Assignment No.075-01129-23-00)The work at NRMU MEPhI was supported by the Ministry of Science and Higher Education of the Russian Federation(Agreement No.075-15-2021-1361)This project has received funding from the CNR funded Italian research Network ELI-Italy(D.M.No.63108.08.2016)This work was funded by United Kingdom EPSRC Grants No.EP/P026796/1 and No.EP/L01663X/1.The results presented in this paper are based on work carried out between September 2018 and December 2021.
文摘In an experiment carried out at the Prague Asterix Laser System at laser intensities relevant to shock ignition conditions(I>10^(16) W/cm^(2)),the heating and transport of hot electrons were studied by using several complementary diagnostics,i.e.,K_(α)time-resolved imaging,hard x-ray filtering(a bremsstrahlung cannon),and electron spectroscopy.Ablators with differing composition from low Z(parylene N)to high Z(nickel)were used in multilayer planar targets to produce plasmas with different coronal temperature and collisionality and modify the conditions of hot-electron generation.The variety of available diagnostics allowed full characterization of the population of hot electrons,retrieving their conversion efficiency,time generation and duration,temperature,and angular divergence.The obtained results are shown to be consistent with those from detailed simulations and similar inertial confinement fusion experiments.Based on the measured data,the advantages,reliability,and complementarity of the experimental diagnostics are discussed.
基金The study was supported financially by the Russian Foundation for Basic Research(Grant No.20-02-00790)the Joint Institute for High Temperatures of the Russian Academy of Sciences(Topic Grant No.01201357846)The UK team received financial support from the Engineering and Physical Sciences Research Council(Grant Nos.EP/L01663X/1 and EP/H012605/1).
文摘X-ray absorption spectroscopy is a well-accepted diagnostic for experimental studies of warm dense matter.It requires a short-lived X-ray source of sufficiently high emissivity and without characteristic lines in the spectral range of interest.In the present work,we discuss how to choose an optimum material and thickness to get a bright source in the wavelength range 2A–6A(∼2 keV to 6 keV)by considering relatively low-Z elements.We demonstrate that the highest emissivity of solid aluminum and silicon foil targets irradiated with a 1-ps high-contrast sub-kJ laser pulse is achieved when the target thickness is close to 10μm.An outer plastic layer can increase the emissivity even further.
基金The reported study was funded by RFBR,project number 19-32-60050the Ministry of Education,Youth,and Sports of the Czech Republic[Project No.LM2018114(PALS Infrastructure)]it was conducted within the framework of the State Assignment of the Ministry of Science and Higher Education to JIHT RAS.
文摘Atomic models of high-Zmulticharged ions are extremely complex and require experimental validation.Oneway to do so is to crosscheck the predicted wavelengths of resonance transitions in He-and Li-like ions against precise spectroscopic measurements that use the spectral lines of H-like ions for spectra calibration;these reference data can be modeled with outstanding precision.However,for elements with Z of at least 15,it is quite difficult to create a hot dense plasma with a large concentration ofH-like charge states.To mitigate this issue,the suggestion here is to use as laser targets particular minerals comprising elements with moderate(between 15 and 30)and low(less than 15)Z,with emission from the latter delivering perfect reference lines over a whole range o fHe-and Li-like moderate-Z emission under examination.This approach is implemented to measure the wavelengths of resonance transitions(1snp→1s^(2) for n=2,3)in He-likeKions and their dielectronic satellites by irradiating plates of orthoclase(KAlSi_(3)O_(8))with0.5-kJ subnanosecond laser pulses.X-ray spectra of the laser-generated plasma contain the investigated lines of highly charged K-ions together with precisely known reference lines of H-like Al and Si atoms.The K-shell spectral line wavelengths are measured with a precision of around 0.3 mA.
基金financial support from the LASERLAB-EUROPE Access to Research Infrastructure activity within the ECs seventh Framework Programfunding from the Euratom research and training programme 2014–2018 under grant agreement No. 633053+4 种基金partially supported by the project ELITAS (ELI Tools for Advanced Simulation) CZ.02.1.01/0.0/0.0/16 013/0001793HIFI (High Field Initiative, CZ.02.1.01/0.0/0.0/15 003/0000449)ADONIS (Advanced research using high-intensity laser produced photons and particles, CZ.02.1.01/0.0/0.0/16 019/0000789)ELITAS (ELI Tools for Advanced Simulations,CZ.02.1.01/0.0/0.0/16 013/0001793)financial support from the Czech Ministry of Education, Youth and Sports within grants LTT17015, LM2015083, and CZ.02.1.01/0.0/0.0/16 013/0001552 (EF16 013/0001552)
文摘Laser–plasma interaction(LPI)at intensities 1015–1016 W·cm^-2 is dominated by parametric instabilities which can be responsible for a significant amount of non-collisional absorption and generate large fluxes of high-energy nonthermal electrons.Such a regime is of paramount importance for inertial confinement fusion(ICF)and in particular for the shock ignition scheme.In this paper we report on an experiment carried out at the Prague Asterix Laser System(PALS)facility to investigate the extent and time history of stimulated Raman scattering(SRS)and two-plasmon decay(TPD)instabilities,driven by the interaction of an infrared laser pulse at an intensity^1.2×1016 W·cm^-2 with a^100μm scalelength plasma produced from irradiation of a flat plastic target.The laser pulse duration(300 ps)and the high value of plasma temperature(~4 ke V)expected from hydrodynamic simulations make these results interesting for a deeper understanding of LPI in shock ignition conditions.Experimental results show that absolute TPD/SRS,driven at a quarter of the critical density,and convective SRS,driven at lower plasma densities,are well separated in time,with absolute instabilities driven at early times of interaction and convective backward SRS emerging at the laser peak and persisting all over the tail of the pulse.Side-scattering SRS,driven at low plasma densities,is also clearly observed.Experimental results are compared to fully kinetic large-scale,two-dimensional simulations.Particle-in-cell results,beyond reproducing the framework delineated by the experimental measurements,reveal the importance of filamentation instability in ruling the onset of SRS and stimulated Brillouin scattering instabilities and confirm the crucial role of collisionless absorption in the LPI energy balance.
基金the support of the laser technical team at GSI PHELIXhas been carried out within the framework of the EUROfusion Enabling Research Project:ENR-IFE19.CEA-01‘Study of Direct Drive and Shock Ignition for IFE:Theory,Simulations,Experiments,Diagnostics Development’and has received funding from Euratom 2019–2020。
文摘In this work we present experimental results on the behavior of diamond at megabar pressure. The experiment was performed using the PHELIX facility at GSI in Germany to launch a planar shock into solid multi-layered diamond samples. The target design allows shock velocity in diamond and in two metal layers to be measured as well as the free surface velocity after shock breakout. As diagnostics, we used two velocity interferometry systems for any reflector(VISARs). Our measurements show that for the pressures obtained in diamond(between 3 and 9 Mbar),the propagation of the shock induces a reflecting state of the material. Finally, the experimental results are compared with hydrodynamical simulations in which we used different equations of state, showing compatibility with dedicated SESAME tables for diamond.