期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Customer Segment Prediction on Retail Transactional Data Using K-Means and Markov Model
1
作者 a.s.harish C.Malathy 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期589-600,共12页
Retailing is a dynamic business domain where commodities and goods are sold in small quantities directly to the customers.It deals with the end user customers of a supply-chain network and therefore has to accommodate... Retailing is a dynamic business domain where commodities and goods are sold in small quantities directly to the customers.It deals with the end user customers of a supply-chain network and therefore has to accommodate the needs and desires of a large group of customers over varied utilities.The volume and volatility of the business makes it one of the prospectivefields for analytical study and data modeling.This is also why customer segmentation drives a key role in multiple retail business decisions such as marketing budgeting,customer targeting,customized offers,value proposition etc.The segmentation could be on various aspects such as demographics,historic behavior or preferences based on the use cases.In this paper,historic retail transactional data is used to segment the custo-mers using K-Means clustering and the results are utilized to arrive at a transition matrix which is used to predict the cluster movements over the time period using Markov Model algorithm.This helps in calculating the futuristic value a segment or a customer brings to the business.Strategic marketing designs and budgeting can be implemented using these results.The study is specifically useful for large scale marketing in domains such as e-commerce,insurance or retailers to segment,profile and measure the customer lifecycle value over a short period of time. 展开更多
关键词 K-MEANS retail analytics clustering cluster prediction Markov chain transition matrix RFM model customer segmentation segment prediction Markov model segment profiling
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部