For any group G, denote byπe(G) the set of orders of elements in G. Given a finite group G, let h(πe (G)) be the number of isomorphism classes of finite groups with the same set πe(G) of element orders. A group G i...For any group G, denote byπe(G) the set of orders of elements in G. Given a finite group G, let h(πe (G)) be the number of isomorphism classes of finite groups with the same set πe(G) of element orders. A group G is called k-recognizable if h(πe(G)) = k <∞, otherwise G is called non-recognizable. Also a 1-recognizable group is called a recognizable (or characterizable) group. In this paper the authors show that the simple groups PSL(3,q), where 3 < q≡±2 (mod 5) and (6, (q-1)/2) = 1, are recognizable.展开更多
For G a finite group,π_e(G)denotes the set of orders of elements in G.If Ω is a subset of the set of natural numbers,h(Ω)stands for the number of isomorphism classes of finite groups with the same set Ω of element...For G a finite group,π_e(G)denotes the set of orders of elements in G.If Ω is a subset of the set of natural numbers,h(Ω)stands for the number of isomorphism classes of finite groups with the same set Ω of element orders.We say that G is k-distinguishable if h(π_(G))=k<∞,otherwise G is called non-distinguishable.Usually,a 1-distinguishable group is called a characterizable group.It is shown that if M is a sporadic simple group different from M_(12),M_(22),J_2,He,Suz,M^cL and O'N, then Aut(M)is charaeterizable by its dement orders.It is also proved that if M is isomorphic to M_(12),M_(22),He,Suz or O'N,then h(π_e(Aut(M)))∈{1,∞}.展开更多
The spectrum of a finite group is the set of its element orders,and two groups are said to be isospectral if they have the same spectra.A finite group G is said to be recognizable by spectrum,if every finite group iso...The spectrum of a finite group is the set of its element orders,and two groups are said to be isospectral if they have the same spectra.A finite group G is said to be recognizable by spectrum,if every finite group isospectral with G is isomorphic to G.We prove that if S is one of the sporadic simple groups M^(c)L,M_(12),M_(22),He,Suz and O'N,then Aut(S)is recognizable by spectrum.This finishes the proof of the recognizability by spectrum of the automorphism groups of all sporadic simple groups,except J_(2).展开更多
基金This work has been supported by the Research Institute for Fundamental Sciences Tabriz,Iran.
文摘For any group G, denote byπe(G) the set of orders of elements in G. Given a finite group G, let h(πe (G)) be the number of isomorphism classes of finite groups with the same set πe(G) of element orders. A group G is called k-recognizable if h(πe(G)) = k <∞, otherwise G is called non-recognizable. Also a 1-recognizable group is called a recognizable (or characterizable) group. In this paper the authors show that the simple groups PSL(3,q), where 3 < q≡±2 (mod 5) and (6, (q-1)/2) = 1, are recognizable.
基金This work has been partially sopported by the Research Institute for Fundamental Sciences Tabriz,Iran
文摘For G a finite group,π_e(G)denotes the set of orders of elements in G.If Ω is a subset of the set of natural numbers,h(Ω)stands for the number of isomorphism classes of finite groups with the same set Ω of element orders.We say that G is k-distinguishable if h(π_(G))=k<∞,otherwise G is called non-distinguishable.Usually,a 1-distinguishable group is called a characterizable group.It is shown that if M is a sporadic simple group different from M_(12),M_(22),J_2,He,Suz,M^cL and O'N, then Aut(M)is charaeterizable by its dement orders.It is also proved that if M is isomorphic to M_(12),M_(22),He,Suz or O'N,then h(π_e(Aut(M)))∈{1,∞}.
基金This work is supported by Russian Science Foundation(Project No.14-21-00065).
文摘The spectrum of a finite group is the set of its element orders,and two groups are said to be isospectral if they have the same spectra.A finite group G is said to be recognizable by spectrum,if every finite group isospectral with G is isomorphic to G.We prove that if S is one of the sporadic simple groups M^(c)L,M_(12),M_(22),He,Suz and O'N,then Aut(S)is recognizable by spectrum.This finishes the proof of the recognizability by spectrum of the automorphism groups of all sporadic simple groups,except J_(2).