In this study,we analyze the convergence of the finite difference method on non-uniform grids and provide examples to demonstrate its effectiveness in approximating fractional differential equations involving the frac...In this study,we analyze the convergence of the finite difference method on non-uniform grids and provide examples to demonstrate its effectiveness in approximating fractional differential equations involving the fractional Laplacian.By utilizing non-uniform grids,it becomes possible to achieve higher accuracy and improved resolution in specific regions of interest.Overall,our findings indicate that finite difference approximation on non-uniform grids can serve as a dependable and efficient tool for approximating fractional Laplacians across a diverse array of applications.展开更多
基金supported by the Spanish MINECO through Juan de la Cierva fellow-ship FJC2021-046953-I.
文摘In this study,we analyze the convergence of the finite difference method on non-uniform grids and provide examples to demonstrate its effectiveness in approximating fractional differential equations involving the fractional Laplacian.By utilizing non-uniform grids,it becomes possible to achieve higher accuracy and improved resolution in specific regions of interest.Overall,our findings indicate that finite difference approximation on non-uniform grids can serve as a dependable and efficient tool for approximating fractional Laplacians across a diverse array of applications.