The influence of tin on the hot ductility of a 0.15wt%C steel is investigated using a continuous-casting thermal simulator with three cooling rates. Tin can apparently deteriorate the hot ductility of the steel. Non-e...The influence of tin on the hot ductility of a 0.15wt%C steel is investigated using a continuous-casting thermal simulator with three cooling rates. Tin can apparently deteriorate the hot ductility of the steel. Non-equilibrium grain boundary segregation of tin occurs during cooling and plays an important role in reducing the hot ductility of the steel. There is a critical cooling rate for the Sn segregation being between 5 and 20K/s.展开更多
Antimony grain boundary segregation in Fe-2%Mn-Sb structure steels has been studied through measurements of the ductile-brittle transition temperature in conjunction with scanning electron microscopy, Auger electron s...Antimony grain boundary segregation in Fe-2%Mn-Sb structure steels has been studied through measurements of the ductile-brittle transition temperature in conjunction with scanning electron microscopy, Auger electron spectroscopy and secondary ion mass spectroscopy. The research result reveals that during tempering or ageing after quenching at 980℃, Sb segregates to grain boundaries with both equilibrium and non-equilibrium natures and brings about temper embrittlement in the steels. Cerium can relieve temper embrittlement of the steels and its segregation to grain boundaries may play an important role in reducing this embrittlement.展开更多
The micro structure and mechanical properties of new kind of hot-rolled high strength and high elongation steels with retained austenite were studied by discussing the influence of different carbon content. The resear...The micro structure and mechanical properties of new kind of hot-rolled high strength and high elongation steels with retained austenite were studied by discussing the influence of different carbon content. The research results indicate that carbon content has a significant effect on retaining austenite and consequently resulting in high elongation. Besides, new findings about relationship between carbon content and retained austenite as well as properties were discussed in the paper.展开更多
The different chemical composition of silicon and manganese as well as different retained austenite fraction ranged from 4% to 10% of the high strength and high elongation steels were studied in the paper. The disloca...The different chemical composition of silicon and manganese as well as different retained austenite fraction ranged from 4% to 10% of the high strength and high elongation steels were studied in the paper. The dislocations and carbon concentration in retained austenite were observed by a transmission electron microscope and an electric probe analyzer, respectively. The experimental results showed that silicon and manganese are two fundamental alloying elements to stabilize austenite effectively but retaining austenite in different mechanisms. Meanwhile, the cooling processing played an important role in controlling the fraction of retained austenite of the hot-rolled high strength and high plasticity steels.展开更多
基金supported by the Natural Science Foundation oy Hubei Province(NO.2000J018).
文摘The influence of tin on the hot ductility of a 0.15wt%C steel is investigated using a continuous-casting thermal simulator with three cooling rates. Tin can apparently deteriorate the hot ductility of the steel. Non-equilibrium grain boundary segregation of tin occurs during cooling and plays an important role in reducing the hot ductility of the steel. There is a critical cooling rate for the Sn segregation being between 5 and 20K/s.
文摘Antimony grain boundary segregation in Fe-2%Mn-Sb structure steels has been studied through measurements of the ductile-brittle transition temperature in conjunction with scanning electron microscopy, Auger electron spectroscopy and secondary ion mass spectroscopy. The research result reveals that during tempering or ageing after quenching at 980℃, Sb segregates to grain boundaries with both equilibrium and non-equilibrium natures and brings about temper embrittlement in the steels. Cerium can relieve temper embrittlement of the steels and its segregation to grain boundaries may play an important role in reducing this embrittlement.
文摘The micro structure and mechanical properties of new kind of hot-rolled high strength and high elongation steels with retained austenite were studied by discussing the influence of different carbon content. The research results indicate that carbon content has a significant effect on retaining austenite and consequently resulting in high elongation. Besides, new findings about relationship between carbon content and retained austenite as well as properties were discussed in the paper.
文摘The different chemical composition of silicon and manganese as well as different retained austenite fraction ranged from 4% to 10% of the high strength and high elongation steels were studied in the paper. The dislocations and carbon concentration in retained austenite were observed by a transmission electron microscope and an electric probe analyzer, respectively. The experimental results showed that silicon and manganese are two fundamental alloying elements to stabilize austenite effectively but retaining austenite in different mechanisms. Meanwhile, the cooling processing played an important role in controlling the fraction of retained austenite of the hot-rolled high strength and high plasticity steels.