This study focusses on the numerical investigations of boundary layer flow for magnetohydrodynamic(MHD)and a power-law nanofluid containing gyrotactic microorganisms on an exponentially stretching surface with zero na...This study focusses on the numerical investigations of boundary layer flow for magnetohydrodynamic(MHD)and a power-law nanofluid containing gyrotactic microorganisms on an exponentially stretching surface with zero nanoparticle mass flux and convective heating.The nonlinear system of the governing equations is transformed and solved by Runge-Kutta-Fehlberg method.The impacts of the transverse magnetic field,bioconvection parameters,Lewis number,nanofluid parameters,Prandtl number and power-law index on the velocity,temperature,nanoparticle volume fraction,density of motile microorganism profiles is explored.In addition,the impacts of these parameters on local skin-friction coefficient,local Nusselt,local Sherwood numbers and local density number of the motile microorganisms are discussed.The results reveal that the power law index is considered an important factor in this study.Due to neglecting the buoyancy force term,the bioconvection and nanofluid parameters have slight effects on the velocity profiles.The resultant Lorentz force,from increasing the magnetic field parameter,try to decrease the velocity profiles and increase the rescaled density of motile microorganisms,temperature and nanoparticle volume fraction profiles.Physically,an augmentation of power-law index drops the reduced local skin-friction and reduced Sherwood number,while it increases reduced Nusselt number and reduced local density number of motile microorganisms.展开更多
In the present study,the effects of the magnetic field on the entropy generation during fluid flow and heat transfer of a Sisko-fluid over an exponentially stretching surface are considered.The similarity transformati...In the present study,the effects of the magnetic field on the entropy generation during fluid flow and heat transfer of a Sisko-fluid over an exponentially stretching surface are considered.The similarity transformations are used to transfer the governing partial differential equations into a set of nonlinear-coupled ordinary differential equations.Runge-Kutta-Fehlberg method is used to solve the governing problem.The effects of magnetic field parameter,local slip parameterλ,generalized Biot numberγ,Sisko fluid material parameter,Eckert number Ec,Prandtl number Pr and Brinkman number Br at two values of power law index on the velocity,temperature,local entropy generation number N_(G) and Bejan number Be are inspected.Moreover,the tabular forms for local skin friction coefficient and local Nusselt number under the effects of the physical parameters are exhibited.The current results are helpful in checking the entropy generation for Sisko-fluid.It is found that,an extra magnetic field parameter makes higher Lorentz force that suppresses the velocity.For shear thinning fluids(n<1),the temperature dominates and the velocity rises.Local entropy generation number is more for larger generalized Biot number,magnetic field parameter and Brinkman number.The local skin friction coefficient increases as magnetic field parameter and material parameter are increase and it decreases as local slip parameter increases.The local Nusselt number decreases as magnetic field parameter,local slip parameter and Eckert number are increase,while it increases as material parameter,generalized Biot number and Prandtl number are increase.展开更多
基金the Deanship of Scientific Research at King Khalid University for funding this work through Big Group Research Project under grant number(R.G.P2/16/40).
文摘This study focusses on the numerical investigations of boundary layer flow for magnetohydrodynamic(MHD)and a power-law nanofluid containing gyrotactic microorganisms on an exponentially stretching surface with zero nanoparticle mass flux and convective heating.The nonlinear system of the governing equations is transformed and solved by Runge-Kutta-Fehlberg method.The impacts of the transverse magnetic field,bioconvection parameters,Lewis number,nanofluid parameters,Prandtl number and power-law index on the velocity,temperature,nanoparticle volume fraction,density of motile microorganism profiles is explored.In addition,the impacts of these parameters on local skin-friction coefficient,local Nusselt,local Sherwood numbers and local density number of the motile microorganisms are discussed.The results reveal that the power law index is considered an important factor in this study.Due to neglecting the buoyancy force term,the bioconvection and nanofluid parameters have slight effects on the velocity profiles.The resultant Lorentz force,from increasing the magnetic field parameter,try to decrease the velocity profiles and increase the rescaled density of motile microorganisms,temperature and nanoparticle volume fraction profiles.Physically,an augmentation of power-law index drops the reduced local skin-friction and reduced Sherwood number,while it increases reduced Nusselt number and reduced local density number of motile microorganisms.
文摘In the present study,the effects of the magnetic field on the entropy generation during fluid flow and heat transfer of a Sisko-fluid over an exponentially stretching surface are considered.The similarity transformations are used to transfer the governing partial differential equations into a set of nonlinear-coupled ordinary differential equations.Runge-Kutta-Fehlberg method is used to solve the governing problem.The effects of magnetic field parameter,local slip parameterλ,generalized Biot numberγ,Sisko fluid material parameter,Eckert number Ec,Prandtl number Pr and Brinkman number Br at two values of power law index on the velocity,temperature,local entropy generation number N_(G) and Bejan number Be are inspected.Moreover,the tabular forms for local skin friction coefficient and local Nusselt number under the effects of the physical parameters are exhibited.The current results are helpful in checking the entropy generation for Sisko-fluid.It is found that,an extra magnetic field parameter makes higher Lorentz force that suppresses the velocity.For shear thinning fluids(n<1),the temperature dominates and the velocity rises.Local entropy generation number is more for larger generalized Biot number,magnetic field parameter and Brinkman number.The local skin friction coefficient increases as magnetic field parameter and material parameter are increase and it decreases as local slip parameter increases.The local Nusselt number decreases as magnetic field parameter,local slip parameter and Eckert number are increase,while it increases as material parameter,generalized Biot number and Prandtl number are increase.