Nanometer Zn particles with mean diameters 12-100nm made by evaporating its powders in argon gas were studied mainly by X-ray diffraction and electron microscopy. They are collected at various distances and those fact...Nanometer Zn particles with mean diameters 12-100nm made by evaporating its powders in argon gas were studied mainly by X-ray diffraction and electron microscopy. They are collected at various distances and those factors influencing the mean particle size were studied. The optimal synthetic conditions were obtained, i.e., evaporation temperature is 1200℃; argon flow rate is 0.4m3/h; amount of powder charged is 3g; distance from evaporation source is 10cm. It was found that the size of particles was governed by argon flow rate, evaporation temperature, amount of metal charged and distance from the source. The size increases remarkably with distance in the space where no metal vapor exists. This implies that the crystallites grow by coalescence. Electron micrographs and diffraction patterns are reproduced to show the size, shape and state of oxidations. Nanoparticles with definite crystal habits were sometimes observed among those with irregular ones.展开更多
Nano-ZnO particle was produced by evaporating zinc powders in air at air flow-rate from 0.2 to 0.6m3/h. Nano-ZnO particles was formed by the oxidation of the evaporated zinc vapor. X-ray diffraction shows the powders ...Nano-ZnO particle was produced by evaporating zinc powders in air at air flow-rate from 0.2 to 0.6m3/h. Nano-ZnO particles was formed by the oxidation of the evaporated zinc vapor. X-ray diffraction shows the powders to be ZnO with lattice parameters of a=0.3249nm and c=0.5205nm. The particle size is dependent upon the transit time from the source to the collection area. The size of particles was ranged between 81 to 103nm. The average density resulted was 4.865g/cm3. Normal ZnO and nano-ZnO were investigated to use them in aluminum metallurgy as an inert anode material. A certain amount of both oxides were molded subsequently inserted to the molten cryolite-aluminum oxide to investigate the corrosive behavior of both oxides. When the sintering temperature increased up to 1300℃, the weight loss ratio rose to 5.01%-7.33% and up to 7.67%-10.18% for nano-ZnO and normal ZnO, respectively. However, when the samples in the molten cryolite aluminum oxide were put for long time, the corrosive rate was found to be higher. It was found that the corrosive loss weight ratio of nano-ZnO anode was much lower than the normal one made from ordinary-ZnO providing that the nano-ZnO is more possible to be use inert anode material.展开更多
The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of...The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^(35) cm^(–2)·s^(–1) or higher.The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory—the BEPCII,providing a unique platform for exploring the asymmetry of matter-antimatter(charge-parity violation),in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions,as well as searching for exotic hadrons and physics beyond the Standard Model.The STCF project in China is under development with an extensive R&D program.This document presents the physics opportunities at the STCF,describes conceptual designs of the STCF detector system,and discusses future plans for detector R&D and physics case studies.展开更多
The generation of plasma in a microwave ion source involves confining electrons using a static magnetic field and energizing them with an electromagnetic field that transmitted into the plasma chamber.However,accordin...The generation of plasma in a microwave ion source involves confining electrons using a static magnetic field and energizing them with an electromagnetic field that transmitted into the plasma chamber.However,according to electromagnetics theory,there is always a cut-off size in circular wave guides for a given frequency.For a 2.45 GHz microwave,this dimension is 72 mm,which should theoretically prevent transmission of the microwave into the discharge chamber and no plasma can be generated.Since 2006 Peking University(PKU)has successfully developed a series of permanent magnet 2.45 GHz microwave ion sources(PKU PMECRs)with a discharge chamber less than 50 mm,capable of delivering tens of mA beams for accelerators.To explain this anomalous phenomenon,a hybrid discharge heating(HDH)mode that combines surface wave plasma and electron cyclotron heating has been proposed.This HDH mode not only successfully explains PKU PMECRs,but also predicts that the optimized inner diameter of the plasma chamber is 24 mm,which is confirmed by experiments involving different liners in the miniaturized microwave ion source.展开更多
文摘Nanometer Zn particles with mean diameters 12-100nm made by evaporating its powders in argon gas were studied mainly by X-ray diffraction and electron microscopy. They are collected at various distances and those factors influencing the mean particle size were studied. The optimal synthetic conditions were obtained, i.e., evaporation temperature is 1200℃; argon flow rate is 0.4m3/h; amount of powder charged is 3g; distance from evaporation source is 10cm. It was found that the size of particles was governed by argon flow rate, evaporation temperature, amount of metal charged and distance from the source. The size increases remarkably with distance in the space where no metal vapor exists. This implies that the crystallites grow by coalescence. Electron micrographs and diffraction patterns are reproduced to show the size, shape and state of oxidations. Nanoparticles with definite crystal habits were sometimes observed among those with irregular ones.
文摘Nano-ZnO particle was produced by evaporating zinc powders in air at air flow-rate from 0.2 to 0.6m3/h. Nano-ZnO particles was formed by the oxidation of the evaporated zinc vapor. X-ray diffraction shows the powders to be ZnO with lattice parameters of a=0.3249nm and c=0.5205nm. The particle size is dependent upon the transit time from the source to the collection area. The size of particles was ranged between 81 to 103nm. The average density resulted was 4.865g/cm3. Normal ZnO and nano-ZnO were investigated to use them in aluminum metallurgy as an inert anode material. A certain amount of both oxides were molded subsequently inserted to the molten cryolite-aluminum oxide to investigate the corrosive behavior of both oxides. When the sintering temperature increased up to 1300℃, the weight loss ratio rose to 5.01%-7.33% and up to 7.67%-10.18% for nano-ZnO and normal ZnO, respectively. However, when the samples in the molten cryolite aluminum oxide were put for long time, the corrosive rate was found to be higher. It was found that the corrosive loss weight ratio of nano-ZnO anode was much lower than the normal one made from ordinary-ZnO providing that the nano-ZnO is more possible to be use inert anode material.
基金supported by the National Key R&D Program of China under Contract No.2022YFA1602200the International Partnership Program of the Chineses Academy of Sciences under Grant No.211134KYSB20200057the STCF Key Technology Research and Development Project.
文摘The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^(35) cm^(–2)·s^(–1) or higher.The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory—the BEPCII,providing a unique platform for exploring the asymmetry of matter-antimatter(charge-parity violation),in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions,as well as searching for exotic hadrons and physics beyond the Standard Model.The STCF project in China is under development with an extensive R&D program.This document presents the physics opportunities at the STCF,describes conceptual designs of the STCF detector system,and discusses future plans for detector R&D and physics case studies.
基金supported by National Natural Science Foundation of China(Grant Nos.12205019,12147144 and 11975036).The support from State Key Laboratory of Nuclear Physics and Technology,Peking University is appreciated.
文摘The generation of plasma in a microwave ion source involves confining electrons using a static magnetic field and energizing them with an electromagnetic field that transmitted into the plasma chamber.However,according to electromagnetics theory,there is always a cut-off size in circular wave guides for a given frequency.For a 2.45 GHz microwave,this dimension is 72 mm,which should theoretically prevent transmission of the microwave into the discharge chamber and no plasma can be generated.Since 2006 Peking University(PKU)has successfully developed a series of permanent magnet 2.45 GHz microwave ion sources(PKU PMECRs)with a discharge chamber less than 50 mm,capable of delivering tens of mA beams for accelerators.To explain this anomalous phenomenon,a hybrid discharge heating(HDH)mode that combines surface wave plasma and electron cyclotron heating has been proposed.This HDH mode not only successfully explains PKU PMECRs,but also predicts that the optimized inner diameter of the plasma chamber is 24 mm,which is confirmed by experiments involving different liners in the miniaturized microwave ion source.