Intraday polarization angle swings of ~180° observed in two sources (QSO0917+624 and QSO 1150+812) are discussed in the framework of refractive interstellar scintillationby a continuous interstellar medium. Mode...Intraday polarization angle swings of ~180° observed in two sources (QSO0917+624 and QSO 1150+812) are discussed in the framework of refractive interstellar scintillationby a continuous interstellar medium. Model-fits to the I-, Q- and U- light curves were made for bothsources. It is shown that for the case of 0917+624 both the intraday intensity variations and thepolarization angle swing of ~180° could be explained consistently in terms of a four-componentmodel, which comprises one steady and two scintillating polarized components and one furthernon-polarized scintillating component. The polarization angle swing of ~180° observed in 1150+812,which occurred when the polarized flux density was almost constant, could not be explained in termsof refractive scintillation by a continuous medium and might be due to other mechanisms (e.g.,scintillation by interstellar clouds).展开更多
We present a detailed analysis of multi-frequency observations of linear polarization in the intraday variable quasar 0917+624 (z = 1.44). The observations were made in May 1989 at five frequencies (1.4, 2.7, 5.0, 8.3...We present a detailed analysis of multi-frequency observations of linear polarization in the intraday variable quasar 0917+624 (z = 1.44). The observations were made in May 1989 at five frequencies (1.4, 2.7, 5.0, 8.3 and 15GHz) with the VLA and the Effelsberg 100 m-telescope and in December 1988 at two frequencies (2.7 and 5.0 GHz) with the latter. It is shown that the relationship between the variations of the polarized and total flux density is highly wavelength dependent, and the multi-frequency polarization behavior may be essential for investigating the mechanisms causing these variations. It is shown that the variations observed at 20 cm can be interpreted in terms of refractive interstellar scintillation. However, after subtracting the variation due to scintillation, three 'features' emerged in the light-curve of the polarized flux density, indicating an additional variable component. Interestingly, these features are shown to be correlated with the variations at 2-6 cm, thus indicating that these features and the associated variations are due to some intrinsic causes. Moreover, a very rapid polarization angle swing of - 180° observed in December 1988 which cannot be explained by refractive interstellar scintillation, may also be produced by an intrinsic mechanism. Accordingly, we use a shock model to explain the polarization variations observed at the higher frequencies, although scintillation could also exist. The shock model can explain not only the variation of intensity, but also the time variation of its degree and angle of polarization, including the rapid swing of the polarization angle. It is shown that the degree and angle of polarization of the shock need only vary slightly in order to account for the observed complicated behaviour of polarization.展开更多
文摘Intraday polarization angle swings of ~180° observed in two sources (QSO0917+624 and QSO 1150+812) are discussed in the framework of refractive interstellar scintillationby a continuous interstellar medium. Model-fits to the I-, Q- and U- light curves were made for bothsources. It is shown that for the case of 0917+624 both the intraday intensity variations and thepolarization angle swing of ~180° could be explained consistently in terms of a four-componentmodel, which comprises one steady and two scintillating polarized components and one furthernon-polarized scintillating component. The polarization angle swing of ~180° observed in 1150+812,which occurred when the polarized flux density was almost constant, could not be explained in termsof refractive scintillation by a continuous medium and might be due to other mechanisms (e.g.,scintillation by interstellar clouds).
文摘We present a detailed analysis of multi-frequency observations of linear polarization in the intraday variable quasar 0917+624 (z = 1.44). The observations were made in May 1989 at five frequencies (1.4, 2.7, 5.0, 8.3 and 15GHz) with the VLA and the Effelsberg 100 m-telescope and in December 1988 at two frequencies (2.7 and 5.0 GHz) with the latter. It is shown that the relationship between the variations of the polarized and total flux density is highly wavelength dependent, and the multi-frequency polarization behavior may be essential for investigating the mechanisms causing these variations. It is shown that the variations observed at 20 cm can be interpreted in terms of refractive interstellar scintillation. However, after subtracting the variation due to scintillation, three 'features' emerged in the light-curve of the polarized flux density, indicating an additional variable component. Interestingly, these features are shown to be correlated with the variations at 2-6 cm, thus indicating that these features and the associated variations are due to some intrinsic causes. Moreover, a very rapid polarization angle swing of - 180° observed in December 1988 which cannot be explained by refractive interstellar scintillation, may also be produced by an intrinsic mechanism. Accordingly, we use a shock model to explain the polarization variations observed at the higher frequencies, although scintillation could also exist. The shock model can explain not only the variation of intensity, but also the time variation of its degree and angle of polarization, including the rapid swing of the polarization angle. It is shown that the degree and angle of polarization of the shock need only vary slightly in order to account for the observed complicated behaviour of polarization.