期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Crack Detection and Localization on Wind Turbine Blade Using Machine Learning Algorithms: A Data Mining Approach 被引量:3
1
作者 a.joshuva V.Sugumaran 《Structural Durability & Health Monitoring》 EI 2019年第2期181-203,共23页
Wind turbine blades are generally manufactured using fiber type material because of their cost effectiveness and light weight property however,blade get damaged due to wind gusts,bad weather conditions,unpredictable a... Wind turbine blades are generally manufactured using fiber type material because of their cost effectiveness and light weight property however,blade get damaged due to wind gusts,bad weather conditions,unpredictable aerodynamic forces,lightning strikes and gravitational loads which causes crack on the surface of wind turbine blade.It is very much essential to identify the damage on blade before it crashes catastrophically which might possibly destroy the complete wind turbine.In this paper,a fifteen tree classification based machine learning algorithms were modelled for identifying and detecting the crack on wind turbine blades.The models are built based on computing the vibration response of the blade when it is excited using piezoelectric accelerometer.The statistical,histogram and ARMA methods for each algorithm were compared essentially to suggest a better model for the identification and localization of crack on wind turbine blade. 展开更多
关键词 Structural health monitoring FAULT diagnosis BLADE CRACK statistical FEATURES HISTOGRAM FEATURES ARMA FEATURES tree algorithms vibration signals
在线阅读 下载PDF
Comparative Study on Tree Classifiers for Application to Condition Monitoring ofWind Turbine Blade through Histogram Features Using Vibration Signals: A Data-Mining Approach 被引量:1
2
作者 a.joshuva V.Sugumaran 《Structural Durability & Health Monitoring》 EI 2019年第4期399-416,共18页
Wind energy is considered as a alternative renewable energy source due to its low operating cost when compared with other sources.The wind turbine is an essential system used to change kinetic energy into electrical e... Wind energy is considered as a alternative renewable energy source due to its low operating cost when compared with other sources.The wind turbine is an essential system used to change kinetic energy into electrical energy.Wind turbine blades,in particular,require a competitive condition inspection approach as it is a significant component of the wind turbine system that costs around 20-25 percent of the total turbine cost.The main objective of this study is to differentiate between various blade faults which affect the wind turbine blade under operating conditions using a machine learning approach through histogram features.In this study,blade bend,hub-blade loose connection,blade erosion,pitch angle twist,and blade cracks were simulated on the blade.This problem is formulated as a machine learning problem which consists of three phases,namely feature extraction,feature selection and feature classification.Histogram features are extracted from vibration signals and feature selection was carried out using the J48 decision tree algorithm.Feature classification was performed using 15 tree classifiers.The results of the machine learning classifiers were compared with respect to their accuracy percentage and a better model is suggested for real-time monitoring of a wind turbine blade. 展开更多
关键词 Condition monitoring fault diagnosis wind turbine blade machine learning histogram features tree classifiers
在线阅读 下载PDF
A Comparative Study of Bayes Classifiers for Blade Fault Diagnosis in Wind Turbines through Vibration Signals
3
作者 a.joshuva V.Sugumaran 《Structural Durability & Health Monitoring》 EI 2017年第1期63-79,共17页
Renewable energy sources are considered much in energy fields because of thecontemporary energy calamities. Among the important alternatives being considered, windenergy is a durable competitor because of its dependab... Renewable energy sources are considered much in energy fields because of thecontemporary energy calamities. Among the important alternatives being considered, windenergy is a durable competitor because of its dependability due to the development of theinnovations, comparative cost effectiveness and great framework. To yield wind energymore proficiently, the structure of wind turbines has turned out to be substantially bigger,creating conservation and renovation works troublesome. Due to various ecologicalconditions, wind turbine blades are subjected to vibration and it leads to failure. If thefailure is not diagnosed early, it will lead to catastrophic damage to the framework. In orderto increase safety observations, to reduce down time, to bring down the recurrence ofunexpected breakdowns and related enormous maintenance, logistic expenditures and tocontribute steady power generation, the wind turbine blade must be monitored now andthen to assure that they are in good condition. In this paper, a three bladed wind turbinewas preferred and using vibration source, the condition of a wind turbine blade is examined.The faults like blade crack, erosion, hub-blade loose connection, pitch angle twist and bladebend faults were considered and these faults are classified using Bayes Net (BN),Discriminative Multinomial Naïve Bayes (DMNB), Naïve Bayes (NB), Simple NaïveBayes (SNB), and Updateable Naïve Bayes (UNB) classifiers. These classifiers arecompared and better classifier is suggested for condition monitoring of wind turbine blades. 展开更多
关键词 Condition monitoring fault diagnosis wind turbine blade machine learning statistical features vibration signals
暂未订购
上一页 1 下一页 到第
使用帮助 返回顶部