Wrought and laser powder bed fusion(LPBF)Ti−6Al−4V(Ti-6-4)specimens were comparatively evaluated,with the objective to determine LPBF Ti−6Al−4V’s suitability for biomedical applications.Testing included nanoindentati...Wrought and laser powder bed fusion(LPBF)Ti−6Al−4V(Ti-6-4)specimens were comparatively evaluated,with the objective to determine LPBF Ti−6Al−4V’s suitability for biomedical applications.Testing included nanoindentation,cyclic polarization in simulated body fluid(SBF,37°C),and dry and SBF“ball-on-plate”sliding.Wrought Ti-6-4 exhibited a lamellarα+βmicrostructure,whereas LPBF Ti-6-4 displayed a fine-grainedα′-martensite microstructure.LPBF Ti-6-4 demonstrated~3%higher indentation modulus and~32%higher hardness,while wrought Ti-6-4 showed~8%higher plasticity.Both alloys exhibited low corrosion rates(10−5 mA/cm^(2)order)and true passivity(10−4 mA/cm^(2)order).No localized corrosion was observed in either two alloys,except for occasional metastable pitting in the LPBF alloy.However,LPBF Ti-6-4 presented higher corrosion rate and passive current,ascribed to its martensitic structure.During dry sliding,LPBF Ti-6-4 exhibited~14%lower volume loss compared to wrought Ti-6-4.Sliding in SBF increased volume losses for both alloys,with wear resistances nearly equalized,as the advantage of LPBF Ti-6-4 decreased due to more intense wear-accelerated corrosion induced by the stressed martensite.Overall,the results demonstrate the suitability of LPBF Ti-6-4 for biomedical uses.展开更多
基金supported by the Ministry of Education and Science of Ukraine(No.0123U101834)support in the framework of the“EU Next generation EU through the Recovery and Resilience Plan for Slovakia”(Nos.09I03-03-V01-00061 and 09I03-03-V01-00099)。
文摘Wrought and laser powder bed fusion(LPBF)Ti−6Al−4V(Ti-6-4)specimens were comparatively evaluated,with the objective to determine LPBF Ti−6Al−4V’s suitability for biomedical applications.Testing included nanoindentation,cyclic polarization in simulated body fluid(SBF,37°C),and dry and SBF“ball-on-plate”sliding.Wrought Ti-6-4 exhibited a lamellarα+βmicrostructure,whereas LPBF Ti-6-4 displayed a fine-grainedα′-martensite microstructure.LPBF Ti-6-4 demonstrated~3%higher indentation modulus and~32%higher hardness,while wrought Ti-6-4 showed~8%higher plasticity.Both alloys exhibited low corrosion rates(10−5 mA/cm^(2)order)and true passivity(10−4 mA/cm^(2)order).No localized corrosion was observed in either two alloys,except for occasional metastable pitting in the LPBF alloy.However,LPBF Ti-6-4 presented higher corrosion rate and passive current,ascribed to its martensitic structure.During dry sliding,LPBF Ti-6-4 exhibited~14%lower volume loss compared to wrought Ti-6-4.Sliding in SBF increased volume losses for both alloys,with wear resistances nearly equalized,as the advantage of LPBF Ti-6-4 decreased due to more intense wear-accelerated corrosion induced by the stressed martensite.Overall,the results demonstrate the suitability of LPBF Ti-6-4 for biomedical uses.