Fully non-inductive plasma start-up was successfully achieved by using a well- controlled microwave source on the spherical tokamak, QUEST. Non-inductive plasmas were maintained for approximately 3-5 min, during which...Fully non-inductive plasma start-up was successfully achieved by using a well- controlled microwave source on the spherical tokamak, QUEST. Non-inductive plasmas were maintained for approximately 3-5 min, during which time power balance estimates could be achieved by monitoring wall and cooling-water temperatures. Approximately 70%-90% of the injected power could be accounted for by calorimetric measurements and approximately half of the injected power was found to be deposited on the vessel wall, which is slightly dependent on the magnetic configuration. The power distribution to water-cooled limiters, which are expected to be exposed to local heat loads, depends significantly on the magnetic configuration, however some of the deposited power is due to energetic electrons, which have large poloidal orbits and are likely to be deposited on the plasma facing components.展开更多
Theoretical and experimental studies associated with electric field effectson the stability and transport are briefly surveyed. The effects of radial electric field on thesuppression and/or enhancement of various micr...Theoretical and experimental studies associated with electric field effectson the stability and transport are briefly surveyed. The effects of radial electric field on thesuppression and/or enhancement of various microinstabilities such as drift waves, flute mode andtemperature gradient modes are discussed. The suppression of flow shear on the electron temperaturegradient mode in plasmas with slightly hollow density profiles is investigated by solving thegyrokinetic integral eigenvalue equation. Comparison between theoretical predictions andexperimental observations based on the HIBP measurements with high temporal and spatial resolutionsis made in bumpy tori and heliotron (CHS) devices.展开更多
基金supported by Grant-in-Aid for JSPS Fellows(KAKENHI Grant Number 16H02441,24656559)performed with the support and under the auspices of the NIFS Collaboration Research Program(NIFS05KUTRO14,NIFS11KUTR061,NIFS13KUTR085,NIFS14KUTR103)+1 种基金supported in part by the Collaborative Research Program of the Research Institute for Applied Mechanics,Kyushu Universitypartly supported by the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics(No.11261140328)
文摘Fully non-inductive plasma start-up was successfully achieved by using a well- controlled microwave source on the spherical tokamak, QUEST. Non-inductive plasmas were maintained for approximately 3-5 min, during which time power balance estimates could be achieved by monitoring wall and cooling-water temperatures. Approximately 70%-90% of the injected power could be accounted for by calorimetric measurements and approximately half of the injected power was found to be deposited on the vessel wall, which is slightly dependent on the magnetic configuration. The power distribution to water-cooled limiters, which are expected to be exposed to local heat loads, depends significantly on the magnetic configuration, however some of the deposited power is due to energetic electrons, which have large poloidal orbits and are likely to be deposited on the plasma facing components.
文摘Theoretical and experimental studies associated with electric field effectson the stability and transport are briefly surveyed. The effects of radial electric field on thesuppression and/or enhancement of various microinstabilities such as drift waves, flute mode andtemperature gradient modes are discussed. The suppression of flow shear on the electron temperaturegradient mode in plasmas with slightly hollow density profiles is investigated by solving thegyrokinetic integral eigenvalue equation. Comparison between theoretical predictions andexperimental observations based on the HIBP measurements with high temporal and spatial resolutionsis made in bumpy tori and heliotron (CHS) devices.