期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
On Rationality of Generating Function for the Number of Spanning Trees in Circulant Graphs
1
作者 a.d.mednykh I.A.Mednykh 《Algebra Colloquium》 SCIE CSCD 2020年第1期87-94,共8页
Let F(x)=∑∞n=1 Tsi,s2,...,sk(n)x^n be the generating function for the number,Ts1bs2,...,sk(n) of spanning trees in the circulant graph Cn(s1,S2,...,Sk).We show that F(x)is a rational function with integer coefficien... Let F(x)=∑∞n=1 Tsi,s2,...,sk(n)x^n be the generating function for the number,Ts1bs2,...,sk(n) of spanning trees in the circulant graph Cn(s1,S2,...,Sk).We show that F(x)is a rational function with integer coefficients satisfying the property F(x)=F(l/x).A similar result is also true for the circulant graphs C2n(s1,S2,....,Sk,n)of odd valency.We illustrate the obtained results by a series of examples. 展开更多
关键词 spanning tree circulant graph Chebyshev polynomial generating function
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部