Thin films of SnSx,semiconductors,have been successfully synthesized by ultrasonic spray pyrolysis technique,using two precursors namely:tin(II)chloride and tin(IV)chloride,respectively.The solutions were prepare...Thin films of SnSx,semiconductors,have been successfully synthesized by ultrasonic spray pyrolysis technique,using two precursors namely:tin(II)chloride and tin(IV)chloride,respectively.The solutions were prepared by the dilution of different Sn molarities of the two precursors separately.The precursor molarities were varied from 0.04 to 0.07 mol/L,whereas that of S was fixed at 0.1 mol/L.The present work focuses on the effect of the different precursor’s molarities on the nature and the properties of the prepared thin films in order to optimize the growth conditions.X-ray diffraction analysis reveals that the precursor’s molarities alter the grain size of the prepared films,which varied from 8 to 14 nm and from 12 to 16 nm,according to the used precursor.The films analysis by SEM,shows that the SnS2 films are more dense and smooth than the SnS films.The composition of the elements is analysed with an EDX spectrometer,and the obtained result for M(sn)=0:07 mol/L indicates that the atomic ratio of Sn to S is 51.57:48:43 and 36:64 for films synthesized from the first and second precursors respectively.Electrical measurements show that the conductivity behavior depends on the used precursors and their molarities.展开更多
Transparent conducting n-type SnO2 semiconductor films were fabricated by employing an inexpensive, simplified spray ultrasonic technique using an ultrasonic generator at deferent substrate temperatures (300, 350, 40...Transparent conducting n-type SnO2 semiconductor films were fabricated by employing an inexpensive, simplified spray ultrasonic technique using an ultrasonic generator at deferent substrate temperatures (300, 350, 400, 450 and 500 ℃). The structural studies reveal that the SnO2 films are polycrystalline at 350,400, 450, 500 ℃ with preferential orientation along the (200) and (101) planes, and amorphous at 300 ℃. The crystallite size of the films was found to be in the range of 20.9-72.2 nm. The optical transmittance in the visible range and the optical band gap are 80% and 3.9 eV respectively. The films thicknesses were varied between 466 and 1840 nm. The resistivity was found between 1.6 and 4 × 10^-2 Ω.cm. This simplified ultrasonic spray technique may be considered as a promising alternative to a conventional spray for the massive production of economic SnO2 films for solar cells, sensors and opto-electronic applications.展开更多
The aim of this work is to investigate the dependence of Zn S thin films structural and optical properties with the solution flow rate during the deposition using an ultrasonic spray method. The solution flow rate ran...The aim of this work is to investigate the dependence of Zn S thin films structural and optical properties with the solution flow rate during the deposition using an ultrasonic spray method. The solution flow rate ranged from 10 to 50 m L/h and the substrate temperature was maintained at 450 °C. The effect of the solution flow rate on the properties of Zn S thin films was investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM), optical transmittance spectroscopy(UV–V) and the four-point method. The X-ray diffraction analysis showed that the deposited material was pure zinc sulphide, it has a cubic sphalerite structure with preferential orientation along the(111) direction. The grain size values were calculated and found to be between 38 to 82 nm.SEM analysis revealed that the deposited thin films have good adherence to the substrate surfaces, are homogeneous and have high density. The average transmission of all films is up more than 65% in the range wavelength from 200 to 1100 nm and their band gap energy values were found between 3.5–3.92 e V. The obtained film thickness varies from 390 to 1040 nm. Moreover, the electric resistivity of the deposited films increases with the increasing of the solution flow rate between 3.51 × 10^5 and 11 × 10^5 Ω·cm.展开更多
Indium oxide (In2O3) thin films are successfully times by an ultrasonic spray technique using Indium chloride deposited on glass substrate at different deposition as the precursor solution; the physical properties o...Indium oxide (In2O3) thin films are successfully times by an ultrasonic spray technique using Indium chloride deposited on glass substrate at different deposition as the precursor solution; the physical properties of these films are characterized by XRD, SEM, and UV-visible. XRD analysis showed that the films are polycrys- talline in nature having a cubic crystal structure and symmetry space group Ia3 with a preferred grain orientation along the (222) plane when the deposition time changes from 4 to 10 min, but when the deposition time equals 13 min we found that the majority of grains preferred the (400) plane. The surface morphology of the In2O3 thin films revealed that the shape of grains changes with the change of the preferential growth orientation. The trans- mittance improvement of In2O3 films was closely related to the good crystalline quality of the films. The optical gap energy is found to increase from 3.46 to 3.79 eV with the increasing of deposition time from 4 to 13 min. The film thickness was varied between 395 and 725 nm. The film grown at 13 min is found to exhibit low resistivity (10-2 Ω.cm), and relatively high transmittance (- 93%).展开更多
Tin sulfide(Snx Sy/ thin films were prepared by a spray ultrasonic technique on glass substrate at 300℃.The influence of deposition time tD2, 4, 6, 8 and 10 min on different properties of thin films, such as(XRD),...Tin sulfide(Snx Sy/ thin films were prepared by a spray ultrasonic technique on glass substrate at 300℃.The influence of deposition time tD2, 4, 6, 8 and 10 min on different properties of thin films, such as(XRD),photoluminescence(PL) and(UV) spectroscopy visible spectrum and four-point were investigated. X-ray diffraction showed that thin films crystallized in SnS2, SnS, and Sn2S3 phases, but the most prominent one is SnS_2. The results of the(UV) spectroscopy visible spectrum show that the film which was deposited at 4 min has a large transmittance of 60% in the visible region. The photoluminescence spectra exhibited the luminescent peaks in the visible region, which shows its potential application in photovoltaic devices. The electrical resistivity(ρ) values of SnxSy films have changed from 8.1×1064to 1.62Ω·cm with deposition time.展开更多
文摘Thin films of SnSx,semiconductors,have been successfully synthesized by ultrasonic spray pyrolysis technique,using two precursors namely:tin(II)chloride and tin(IV)chloride,respectively.The solutions were prepared by the dilution of different Sn molarities of the two precursors separately.The precursor molarities were varied from 0.04 to 0.07 mol/L,whereas that of S was fixed at 0.1 mol/L.The present work focuses on the effect of the different precursor’s molarities on the nature and the properties of the prepared thin films in order to optimize the growth conditions.X-ray diffraction analysis reveals that the precursor’s molarities alter the grain size of the prepared films,which varied from 8 to 14 nm and from 12 to 16 nm,according to the used precursor.The films analysis by SEM,shows that the SnS2 films are more dense and smooth than the SnS films.The composition of the elements is analysed with an EDX spectrometer,and the obtained result for M(sn)=0:07 mol/L indicates that the atomic ratio of Sn to S is 51.57:48:43 and 36:64 for films synthesized from the first and second precursors respectively.Electrical measurements show that the conductivity behavior depends on the used precursors and their molarities.
文摘Transparent conducting n-type SnO2 semiconductor films were fabricated by employing an inexpensive, simplified spray ultrasonic technique using an ultrasonic generator at deferent substrate temperatures (300, 350, 400, 450 and 500 ℃). The structural studies reveal that the SnO2 films are polycrystalline at 350,400, 450, 500 ℃ with preferential orientation along the (200) and (101) planes, and amorphous at 300 ℃. The crystallite size of the films was found to be in the range of 20.9-72.2 nm. The optical transmittance in the visible range and the optical band gap are 80% and 3.9 eV respectively. The films thicknesses were varied between 466 and 1840 nm. The resistivity was found between 1.6 and 4 × 10^-2 Ω.cm. This simplified ultrasonic spray technique may be considered as a promising alternative to a conventional spray for the massive production of economic SnO2 films for solar cells, sensors and opto-electronic applications.
文摘The aim of this work is to investigate the dependence of Zn S thin films structural and optical properties with the solution flow rate during the deposition using an ultrasonic spray method. The solution flow rate ranged from 10 to 50 m L/h and the substrate temperature was maintained at 450 °C. The effect of the solution flow rate on the properties of Zn S thin films was investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM), optical transmittance spectroscopy(UV–V) and the four-point method. The X-ray diffraction analysis showed that the deposited material was pure zinc sulphide, it has a cubic sphalerite structure with preferential orientation along the(111) direction. The grain size values were calculated and found to be between 38 to 82 nm.SEM analysis revealed that the deposited thin films have good adherence to the substrate surfaces, are homogeneous and have high density. The average transmission of all films is up more than 65% in the range wavelength from 200 to 1100 nm and their band gap energy values were found between 3.5–3.92 e V. The obtained film thickness varies from 390 to 1040 nm. Moreover, the electric resistivity of the deposited films increases with the increasing of the solution flow rate between 3.51 × 10^5 and 11 × 10^5 Ω·cm.
文摘Indium oxide (In2O3) thin films are successfully times by an ultrasonic spray technique using Indium chloride deposited on glass substrate at different deposition as the precursor solution; the physical properties of these films are characterized by XRD, SEM, and UV-visible. XRD analysis showed that the films are polycrys- talline in nature having a cubic crystal structure and symmetry space group Ia3 with a preferred grain orientation along the (222) plane when the deposition time changes from 4 to 10 min, but when the deposition time equals 13 min we found that the majority of grains preferred the (400) plane. The surface morphology of the In2O3 thin films revealed that the shape of grains changes with the change of the preferential growth orientation. The trans- mittance improvement of In2O3 films was closely related to the good crystalline quality of the films. The optical gap energy is found to increase from 3.46 to 3.79 eV with the increasing of deposition time from 4 to 13 min. The film thickness was varied between 395 and 725 nm. The film grown at 13 min is found to exhibit low resistivity (10-2 Ω.cm), and relatively high transmittance (- 93%).
文摘Tin sulfide(Snx Sy/ thin films were prepared by a spray ultrasonic technique on glass substrate at 300℃.The influence of deposition time tD2, 4, 6, 8 and 10 min on different properties of thin films, such as(XRD),photoluminescence(PL) and(UV) spectroscopy visible spectrum and four-point were investigated. X-ray diffraction showed that thin films crystallized in SnS2, SnS, and Sn2S3 phases, but the most prominent one is SnS_2. The results of the(UV) spectroscopy visible spectrum show that the film which was deposited at 4 min has a large transmittance of 60% in the visible region. The photoluminescence spectra exhibited the luminescent peaks in the visible region, which shows its potential application in photovoltaic devices. The electrical resistivity(ρ) values of SnxSy films have changed from 8.1×1064to 1.62Ω·cm with deposition time.