期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Comparison of castability,mechanical,and corrosion properties of Mg−Zn−Y−Zr alloys containing LPSO and W phases 被引量:4
1
作者 V.E.BAZHENOV S.S.SAIDOV +8 位作者 Yu.V.TSELOVALNIK O.O.VOROPAEVA I.V.PLISETSKAYA a.a.tokar A.I.BAZLOV V.A.BAUTIN A.A.KOMISSAROV A.V.KOLTYGIN V.D.BELOV 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第5期1276-1290,共15页
The Mg–Zn–Y–Zr alloys with long-period stacking-ordered(LPSO)and W eutectic phases were investigated to develop new magnesium casting alloys.The temperatures for T6 heat treatment were selected based on the hardnes... The Mg–Zn–Y–Zr alloys with long-period stacking-ordered(LPSO)and W eutectic phases were investigated to develop new magnesium casting alloys.The temperatures for T6 heat treatment were selected based on the hardness and electrical conductivity measurements.The hot tearing susceptibility of the alloys with LPSO phase is lower than that of the alloys with W phase,which is associated with the freezing range of the alloys.However,the investigated alloys displayed the same fluidity.Under T6 conditions,increasing the Y content in the alloys resulted in increased yield strength,whereas other tensile properties were similar for the alloys.The corrosion resistance was higher for the alloys with LPSO phase compared to that of the alloys with W phase.Mg−2.5Zn−3.7Y−0.3Zr(mass fraction,%)alloy with LPSO phase possessed high castability and mechanical properties,with a corrosion rate of 2 mm/year. 展开更多
关键词 magnesium alloy casting LPSO phase W phase FLUIDITY hot tearing susceptibility corrosion rate
在线阅读 下载PDF
Microstructure and mechanical and corrosion properties of hot-extruded Mg–Zn–Ca–(Mn)biodegradable alloys 被引量:16
2
作者 V.E.Bazhenov A.V.Li +6 位作者 A.A.Komissarov A.V.Koltygin S.A.Tavolzhanskii V.A.Bautin O.O.Voropaeva A.M.Mukhametshina a.a.tokar 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第4期1436-1451,共16页
Biodegradable Mg-based implants are widely used in clinical applications because they exhibit mechanical properties comparable to those of human bone and require no revision surgery for their removal.Among Mg-based al... Biodegradable Mg-based implants are widely used in clinical applications because they exhibit mechanical properties comparable to those of human bone and require no revision surgery for their removal.Among Mg-based alloys,Mg–Zn–Ca–(Mn)alloys have been extensively investigated for medical applications because the constituent elements of these alloys,Mg,Zn,Ca,and Mn,are present in human tissues as nutrient elements.In this study,we investigated the effect of the hot extrusion temperature on the microstructure,mechanical properties,and biodegradation rate of Mg–Zn–Ca–(Mn)alloys.The results showed that the addition of Mn and a decrease in the extrusion temperature resulted in grain refinement followed by an increase in the strength and a decrease in the elongation at fracture of the alloys.The alloys showed different mechanical properties along the directions parallel and perpendicular to the extrusion direction.The corrosion test of the alloys in the Hanks’solution revealed that the addition of Mn significantly reduced the corrosion rate of the alloys.The Mg–2 wt%Zn–0.7 wt%Ca–1 wt%Mn alloy hot-extruded at 300℃ with an ultimate tensile strength of 278MPa,an yield strength of 229MPa,an elongation at fracture of 10%,and a corrosion rate of 0.3 mm/year was found to be suitable for orthopedic implants. 展开更多
关键词 Biodegradable Mg alloy Mg–Zn–Ca–(Mn) Hot extrusion Mechanical properties Corrosion rate
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部