Peristaltic flow of magnetohydrodynamic (MHD) Williamson fluid in a symmetric chan- nel is addressed. Modeling is given with Sorer and Dufour effects. Channel walls have compliant properties. Analysis has been carri...Peristaltic flow of magnetohydrodynamic (MHD) Williamson fluid in a symmetric chan- nel is addressed. Modeling is given with Sorer and Dufour effects. Channel walls have compliant properties. Analysis has been carried out through long wavelength and low Reynolds number approach. The obtained series solutions for small Weissenberg number are developed. Impact of variables reflecting the salient features of wall properties, Blot numbers and Soret and Dufour on the velocity, temperature and concentration has been point out. Trapping phenomenon is also analyzed.展开更多
文摘Peristaltic flow of magnetohydrodynamic (MHD) Williamson fluid in a symmetric chan- nel is addressed. Modeling is given with Sorer and Dufour effects. Channel walls have compliant properties. Analysis has been carried out through long wavelength and low Reynolds number approach. The obtained series solutions for small Weissenberg number are developed. Impact of variables reflecting the salient features of wall properties, Blot numbers and Soret and Dufour on the velocity, temperature and concentration has been point out. Trapping phenomenon is also analyzed.