The aim of the study was to evaluate the effect of different rates of organic farming aid (OFA) and inorganic fertilizer on the productivity of maize, chemical and microbial properties of soil for higher economic valu...The aim of the study was to evaluate the effect of different rates of organic farming aid (OFA) and inorganic fertilizer on the productivity of maize, chemical and microbial properties of soil for higher economic value. Field experiments were conducted during the 2020 and 2021 cropping seasons at the research fields of CSIR-Savanna Agricultural Research Institute located at Nyankpala in the Guinea savannah agroecology of Ghana. The study consisted of five treatment combinations: full rate of OFA, full rate of NPK, 1/2 OFA + 1/2 NPK, full OFA + 1/2 NPK and a control (no OFA and no NPK) which were arranged in a randomized complete block design with four replications. Analysis of variance indicated significant (P 0.05) treatment and year interaction effect for all the growth parameters except for plant height, leaf area and leaf area index. Apart from hundred seed weight, treatment and year interaction effect for all the yield and yield components was significant (P 0.05). Application of full rate of NPK (90:60:60) resulted in the highest grain yield of 4960 kg·ha<sup>-1</sup>, however it was statistically similar to those obtained by the combined application of full rate of OFA (250 ml·ha<sup>-1</sup>) + 1/2 NPK and 1/2 OFA + 1/2 NPK with grain yield of 4856 kg·ha<sup>-1</sup> and 4639 kg·ha<sup>-1</sup> respectively. There was also a yield advantage of 197. 5%, 191.3%, 178.3 and 79.1% over the control for full NPK rate, full OFA rate + 1/2 NPK rate, 1/2 OFA rate + 1/2 NPK and full OFA rate respectively. Application of full OFA rate + 1/2 NPK enhanced soil basal respiration (evolved CO<sub>2</sub>) and mineralizable C, implying that, combination of full OFA rate and NPK fertilizer would be necessary to boost soil microbial activity and soil labile nutrient pool (labile C pool). This suggests that combined use of full OFA rate + 1/2 NPK fertilizer can be a better strategic tool for improving soil quality. The highest benefit cost ratios (BCR) of 2.58 and 3.77 were obtained following the application of full OFA rate + 1/2 NPK and 1/2 OFA rate + 1/2 NPK respectively. Hence, it could be concluded that complementary use of OFA and NPK is more profitable than using single inputs (either OFA or NPK). Thus, in promoting technology packages to farmers, development practitioners must carefully consider the complementary of inputs that are cost-effective but economically rewarding.展开更多
Network theory and its associated techniques has tremendous impact in various discipline and research, from computer, engineering, architecture, humanities, social science to system biology. However in recent years ep...Network theory and its associated techniques has tremendous impact in various discipline and research, from computer, engineering, architecture, humanities, social science to system biology. However in recent years epidemiology can be said to utilizes these potentials of network theory more than any other discipline. Graph which has been considered as the processor in network theory has a close relationship with epidemiology that dated as far back as early 1900 [1]. This is because the earliest models of infectious disease transfer were in a form of compartment which defines a graph even though adequate knowledge of mathematical computation and mechanistic behavior is scarce. This paper introduces a new type of disease propagation on network utilizing the potentials of neutrosophic algebraic group structures and graph theory.展开更多
文摘The aim of the study was to evaluate the effect of different rates of organic farming aid (OFA) and inorganic fertilizer on the productivity of maize, chemical and microbial properties of soil for higher economic value. Field experiments were conducted during the 2020 and 2021 cropping seasons at the research fields of CSIR-Savanna Agricultural Research Institute located at Nyankpala in the Guinea savannah agroecology of Ghana. The study consisted of five treatment combinations: full rate of OFA, full rate of NPK, 1/2 OFA + 1/2 NPK, full OFA + 1/2 NPK and a control (no OFA and no NPK) which were arranged in a randomized complete block design with four replications. Analysis of variance indicated significant (P 0.05) treatment and year interaction effect for all the growth parameters except for plant height, leaf area and leaf area index. Apart from hundred seed weight, treatment and year interaction effect for all the yield and yield components was significant (P 0.05). Application of full rate of NPK (90:60:60) resulted in the highest grain yield of 4960 kg·ha<sup>-1</sup>, however it was statistically similar to those obtained by the combined application of full rate of OFA (250 ml·ha<sup>-1</sup>) + 1/2 NPK and 1/2 OFA + 1/2 NPK with grain yield of 4856 kg·ha<sup>-1</sup> and 4639 kg·ha<sup>-1</sup> respectively. There was also a yield advantage of 197. 5%, 191.3%, 178.3 and 79.1% over the control for full NPK rate, full OFA rate + 1/2 NPK rate, 1/2 OFA rate + 1/2 NPK and full OFA rate respectively. Application of full OFA rate + 1/2 NPK enhanced soil basal respiration (evolved CO<sub>2</sub>) and mineralizable C, implying that, combination of full OFA rate and NPK fertilizer would be necessary to boost soil microbial activity and soil labile nutrient pool (labile C pool). This suggests that combined use of full OFA rate + 1/2 NPK fertilizer can be a better strategic tool for improving soil quality. The highest benefit cost ratios (BCR) of 2.58 and 3.77 were obtained following the application of full OFA rate + 1/2 NPK and 1/2 OFA rate + 1/2 NPK respectively. Hence, it could be concluded that complementary use of OFA and NPK is more profitable than using single inputs (either OFA or NPK). Thus, in promoting technology packages to farmers, development practitioners must carefully consider the complementary of inputs that are cost-effective but economically rewarding.
文摘Network theory and its associated techniques has tremendous impact in various discipline and research, from computer, engineering, architecture, humanities, social science to system biology. However in recent years epidemiology can be said to utilizes these potentials of network theory more than any other discipline. Graph which has been considered as the processor in network theory has a close relationship with epidemiology that dated as far back as early 1900 [1]. This is because the earliest models of infectious disease transfer were in a form of compartment which defines a graph even though adequate knowledge of mathematical computation and mechanistic behavior is scarce. This paper introduces a new type of disease propagation on network utilizing the potentials of neutrosophic algebraic group structures and graph theory.