Following a magnitude M 7.9 earthquake that struck near Mandalay,Myanmar in March 2025,this study investigates the seismic damage inflicted upon the city’s municipal water supply system.The analysis focuses on the fa...Following a magnitude M 7.9 earthquake that struck near Mandalay,Myanmar in March 2025,this study investigates the seismic damage inflicted upon the city’s municipal water supply system.The analysis focuses on the failure characteristics of water facilities and pipelines,examines cross-system cascading effects,and proposes corresponding recovery strategies.The main findings are as follows:(1)The damage to water plant facilities,concentrated in ancillary structures and connections due to insufficient seismic measures,demonstrated significant intensity-dependence.Increased seismic intensity not only aggravated structural damage but also compromised core treatment processes,leading to deteriorated water quality.(2)Within the same seismic intensity zone,high-density polyethylene(HDPE)pipes exhibited a significantly lower damage occurrence rate than ductile iron(DI)pipes,highlighting the material’s substantial influence on seismic performance.Moreover,a strong positive correlation was observed between the overall pipeline network damage and the seismic intensity.The average damage rate in IntensityⅨzones was 6.84 times that of IntensityⅧzones.(3)A cascading failure,initiated by a power outage,led to water supply disruption,loss of emergency response capability,and elevated secondary risks.This strongly coupled cross-system effect resulted in significant spatiotemporal propagation of disaster impacts.(4)The post-earthquake recovery adopted a phased strategy that prioritized critical facilities.Actions involved rapidly restoring the core supply zone with temporary points,reinstating the water plant’s power supply,and deploying targeted technologies for efficient pipeline repair.The outcomes of this study are expected to provide critical support and a valuable reference for developing earthquake-resilient urban water supply systems.展开更多
基金National Key Research and Development Program of China under Grant No.2023YFC3805201Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant Nos.2024B29 and 2024B25。
文摘Following a magnitude M 7.9 earthquake that struck near Mandalay,Myanmar in March 2025,this study investigates the seismic damage inflicted upon the city’s municipal water supply system.The analysis focuses on the failure characteristics of water facilities and pipelines,examines cross-system cascading effects,and proposes corresponding recovery strategies.The main findings are as follows:(1)The damage to water plant facilities,concentrated in ancillary structures and connections due to insufficient seismic measures,demonstrated significant intensity-dependence.Increased seismic intensity not only aggravated structural damage but also compromised core treatment processes,leading to deteriorated water quality.(2)Within the same seismic intensity zone,high-density polyethylene(HDPE)pipes exhibited a significantly lower damage occurrence rate than ductile iron(DI)pipes,highlighting the material’s substantial influence on seismic performance.Moreover,a strong positive correlation was observed between the overall pipeline network damage and the seismic intensity.The average damage rate in IntensityⅨzones was 6.84 times that of IntensityⅧzones.(3)A cascading failure,initiated by a power outage,led to water supply disruption,loss of emergency response capability,and elevated secondary risks.This strongly coupled cross-system effect resulted in significant spatiotemporal propagation of disaster impacts.(4)The post-earthquake recovery adopted a phased strategy that prioritized critical facilities.Actions involved rapidly restoring the core supply zone with temporary points,reinstating the water plant’s power supply,and deploying targeted technologies for efficient pipeline repair.The outcomes of this study are expected to provide critical support and a valuable reference for developing earthquake-resilient urban water supply systems.